Emerson Liebert ICOM-DO User Manual Page 41

  • Download
  • Add to my manuals
  • Print
  • Page
    / 172
  • Table of contents
  • BOOKMARKS
  • Rated. / 5. Based on customer reviews
Page view 40
Operation
33 Liebert
®
iCOM
®
for Liebert DSE
3.5 Humidity Control
Several humidifier options may be installed on a particular Liebert DSE, depending on model unit
and application requirements. In some humidifier applications, operation is limited to 80°F (26°C)
return air temperature. If the return air temperature reaches the lockout threshold of 80°F (26°C) or
higher during operation, the humidifier will be disabled. After reaching the lockout threshold, the
temperature must fall to 70°F (21°C) before the humidifier becomes operational.
Contact technical support about any problems this routine may cause or for assistance adjusting the
humidifier lockout and/or reset point.
The Liebert iCOM has four humidity sensor control types: Dew Point, Relative, Compensated and
Predictive. The humidity sensor adjusts how the Temperature and Humidity Control determines the
percent requirement for humidification/dehumidification. The humidity sensor control type
parameter, Humidity Control Type, is in both the User and Service menus under Setpoints.
Dew Point—The actual return temperature and humidity measured by Liebert iCOM is used
internally to determine the dew point. When dew point control is selected, the user will set the
humidity setpoint in degrees dew point and will also adjust the proportional band in degrees dew
point.
Relative—The actual return air humidity sensor reading is sent to the Temperature and Humidity
Control to determine if and how much humidification/dehumidification is required. The actual return
air humidity reading is displayed on the Status menu. Unnecessary dehumidification can result when
overcooling occurs during a dehumidification cycle. This is because a higher than normal relative
humidity (RH) reading is caused by overcooling the room. This extends the dehumidification cycle.
Later, when the dehumidification ends and the return air temperature rises to the setpoint, the RH
reading falls. The final RH reading will then be lower than actually desired. If significant overcooling
occurred, the RH could be low enough to activate the humidifier.
Compensated—The actual return air humidity sensor reading is sent to the Temperature and
Humidity Control where the Humidity Setpoint is adjusted based on how much the return room air
temperature deviates from the desired temperature setpoint. The adjusted humidity setpoint is used
for humidification percent requirement determination. For every 1°C deviation from the temperature
setpoint, the humidity setpoint is changed by 3% RH, inversely proportional: if the temperature
increases, the humidity setpoint is decreased, and vice versa. The recalculated humidity setpoint is
shown as the Actual Humidity Setpoint (User Menu, Sensor Data). As the humidity setpoint is
automatically adjusted, the high and low humidity setpoints (User Menu, Set Alarms) are adjusted
accordingly. The unadjusted humidity sensor reading is displayed on the Status menu.
Predictive—The actual return air humidity sensor reading is adjusted before it is sent to the
Temperature and Humidity Control. The humidity sensor reading is adjusted based on how much the
return room air temperature deviates from the desired temperature setpoint. For every 1°C deviation
from the temperature setpoint, the humidity sensor reading is changed by 3% RH, directly
proportional: if the temperature increases, the humidity reading is increased and vice versa. The
adjusted humidity sensor reading is displayed on the Status menu. Units are shipped from the factory
with Predictive humidity control set as default.
If Compensated or Predictive humidity sensor control is selected, overdehumidification is avoided.
When overcooling occurs, causing an increase in the relative humidity sensor reading, the humidity
control program predicts what the RH will be when the dehumidification cycle ends and return air
temperature returns to the setpoint. This allows the dehumidification cycle to end at the proper time.
The Compensated and Predictive humidity sensor control can reduce energy consumption by
minimizing compressor and reheat operation, and eliminating unnecessary humidifier operation.
NOTE
The historical humidity sensor graphs will display the real (unadjusted) sensor readings, no
matter which Humidity Control Sensor Type is selected. The graphical sensor data is in the
User menu under Graphics.
Page view 40
1 2 ... 36 37 38 39 40 41 42 43 44 45 46 ... 171 172

Comments to this Manuals

No comments